Form quadratic functions given the following information:
f(3+√2 )=f(3− √2 )=0; f(1)=−8
The equation of the function is f(x) =?

Respuesta :

Answer:

[tex]f(x)=-\frac{4}{7}(x-\sqrt{2}-3)(x+\sqrt{2}-3)[/tex]

or

[tex]f(x)=-\frac{4}{7}(x^2-6x+7)[/tex]

Step-by-step explanation:

we have

f(3+√2 )=f(3− √2 )=0

so

x1=3+√2 and x2=3−√2 are the roots or x-intercepts of the quadratic equation

The quadratic equation in factored form is equal to

[tex]f(x)=a(x-x1)(x-x2)[/tex]

substitute

[tex]f(x)=a(x-(3+\sqrt{2}))(x-(3-\sqrt{2}))[/tex]

Find the value of the coefficient a

Remember that

f(1)=−8

so

For x=-1 -----> f(x)=-8

substitute

[tex]-8=a(-1-(3+\sqrt{2}))(-1-(3-\sqrt{2}))[/tex]

solve for a

[tex]-8=a(-4-\sqrt{2}))(-4+\sqrt{2}))[/tex]

apply difference of squares

[tex]-8=a(14)[/tex]

[tex]a=-\frac{4}{7}[/tex]

therefore

[tex]f(x)=-\frac{4}{7}(x-(3+\sqrt{2}))(x-(3-\sqrt{2}))[/tex]

[tex]f(x)=-\frac{4}{7}(x-\sqrt{2}-3)(x+\sqrt{2}-3)[/tex]

simplify

Applying distributive property

[tex]f(x)=-\frac{4}{7}(x^2+\sqrt{2}x-3x-\sqrt{2}x-2+3\sqrt{2}-3x-3\sqrt{2}+9)[/tex]

[tex]f(x)=-\frac{4}{7}(x^2-6x+7)[/tex]