Respuesta :

Answer:

6 years

Step-by-step explanation:

we know that

The equation of a exponential growth is equal to

[tex]y=a(1+r)^x[/tex]

where

y ----> is the population

x ---> is the number of years since now

a ---> is the initial value or y-intercept

r ---> is the rate of change

we have

[tex]a=17,000\ people[/tex]

[tex]r=2.5\%=2.5/100=0.025[/tex]

substitute

[tex]y=17,000(1+0.025)^x[/tex]

[tex]y=17,000(1.025)^x[/tex]

For y=19,600

substitute in the exponential equation and solve for x

[tex]19.600=17,000(1.025)^x[/tex]

[tex](19.600/17,000)=(1.025)^x[/tex]

apply log booth sides

[tex]log(19.600/17,000)=log(1.025)^x[/tex]

[tex]log(19.600/17,000)=xlog(1.025)[/tex]

[tex]x=log(19.600/17,000)/log(1.025)=6\ years[/tex]