Respuesta :

Answer:

The choice [tex]2^{6}.2^{3/10}.2^{8/100}[/tex] is equivalent to the expression [tex]2^{6.38}[/tex]  ⇒ A

Step-by-step explanation:

Let us revise some rules of exponents

  • [tex]a^{n}.a^{m}=a^{n+m}[/tex]
  • [tex]\frac{a^{n} }{a^{m}}=a^{n-m}[/tex]
  • [tex](a^{n})^{m}=a^{nm}[/tex]

Remember 1.23 can be written as 1 + [tex]\frac{2}{10}[/tex] + [tex]\frac{3}{100}[/tex]

∵ The expression is [tex]2^{6.38}[/tex]

- Write the exponent as a sum of its digits

∵ 6.38 = 6 + [tex]\frac{3}{10}[/tex] + [tex]\frac{8}{100}[/tex]

∴ The expression can be written as [tex](2)^{6+\frac{3}{10}+\frac{8}{100}}[/tex]

- We can change the adding of exponents to the product of the

    same base as the 1st rule above product

∴  [tex](2)^{6+\frac{3}{10}+\frac{8}{100}}[/tex]  = [tex](2)^{6}.(2)^{\frac{3}{10}}.(2)^{\frac{8}{100}}[/tex]

∴  [tex]2^{6.38}[/tex]  = [tex](2)^{6}.(2)^{\frac{3}{10}}.(2)^{\frac{8}{100}}[/tex]

The choice [tex]2^{6}.2^{3/10}.2^{8/100}[/tex] is equivalent to the expression [tex]2^{6.38}[/tex]