Answer:
Speed of sound inside metal is ≅ 8200 [tex]\frac{m}{s}[/tex]
Explanation:
Given :
Length of metal bar [tex]x = 4.10[/tex] m
From general velocity equation,
[tex]v = \frac{x}{t}[/tex]
Where [tex]v =[/tex] speed of sound in air = 343 [tex]\frac{m}{s}[/tex]
For finding time from above equation,
[tex]t = \frac{x}{v}[/tex]
[tex]t = \frac{4}{343}[/tex]
[tex]t = 0.01166[/tex] sec
Since pulses are separated by [tex]t_{o} =[/tex] [tex]11.1 \times 10^{-3} = 0.0111[/tex] sec
So we take time difference,
[tex]\Delta t = t_{} -t_{o} = 0.0005[/tex]
So speed of sound in metal is,
[tex]v = \frac{x}{\Delta t }[/tex]
[tex]v = \frac{4.10}{0.0005}[/tex]
[tex]v = 8200[/tex] [tex]\frac{m}{s}[/tex]