Answer:
[tex]Kc=17.7[/tex]
Explanation:
Hello,
In this case, for the given reaction:
[tex]2H_2(g) + 2NO(g)\rightleftharpoons 2 H_2O(g) + N_2(g)[/tex]
In such a way, the initial concentrations are:
[tex][H_2]_0=\frac{1.30x10^{-2}mol}{0.1L}=0.130M[/tex]
[tex][NO]_0=\frac{2.60x10^{-2}mol}{0.1L}=0.260M[/tex]
Thus, at equilibrium, the change [tex]x[/tex], due to the chemical reaction extent, turns out:
[tex]x=\frac{[NO]_{0}-[NO]_{eq}}{2} =\frac{0.260M-0.161M}{2}=0.049M[/tex]
Thus, the rest of the concentrations at equilibrium are:
[tex][H_2]_{eq}=0.130M-2(0.049M)=0.032M[/tex]
[tex][H_2O]_{eq}=2(0.049M)=0.098M[/tex]
[tex][N_2]_{eq}=0.049M[/tex]
In such a way, the equilibrium constant for the reaction, result as follows, even when on the statement the NO is excluded, because it participates in the equilibrium:
[tex]Kc=\frac{[H_2O]_{eq}^2[N_2]_{eq}}{[H_2]_{eq}^2[NO]_{eq}^2}=\frac{(0.098M)^2(0.049M)}{(0.032M)^2(0.161M)^2} \\\\Kc=17.7[/tex]
Best regards.