EXAMPLE 5 Find the maximum value of the function f(x, y, z) = x + 2y + 11z on the curve of intersection of the plane x − y + z = 1 and the cylinder x2 + y2 = 1. SOLUTION We maximize the function f(x, y, z) = x + 2y + 11z subject to the constraints g(x, y, z) = x − y + z = 1 and h(x, y, z) = x2 + y2 = 1. The Lagrange condition is ∇f = λ∇g + μ∇h, so we solve the equations

Respuesta :

Answer:

[tex]\displaystyle x= -\frac{10}{\sqrt{269}}\\\\\displaystyle y= \frac{13}{\sqrt{269}}\\\\\displaystyle z = \frac{23\sqrt{269}+269}{269}[/tex]

Maximum value of f=2.41

Step-by-step explanation:

Lagrange Multipliers

It's a method to optimize (maximize or minimize) functions of more than one variable subject to equality restrictions.

Given a function of three variables f(x,y,z) and a restriction in the form of an equality g(x,y,z)=0, then we are interested in finding the values of x,y,z where both gradients are parallel, i.e.

[tex]\bigtriangledown f=\lambda \bigtriangledown g[/tex]

for some scalar [tex]\lambda[/tex] called the Lagrange multiplier.

For more than one restriction, say g(x,y,z)=0 and h(x,y,z)=0, the Lagrange condition is

[tex]\bigtriangledown f=\lambda \bigtriangledown g+\mu \bigtriangledown h[/tex]

The gradient of f is

[tex]\bigtriangledown f=<f_z,f_y,f_z>[/tex]

Considering each variable as independent we have three equations right from the Lagrange condition, plus one for each restriction, to form a 5x5 system of equations in [tex]x,y,z,\lambda,\mu[/tex].

We have

[tex]f(x, y, z) = x + 2y + 11z\\g(x, y, z) = x - y + z -1=0\\h(x, y, z) = x^2 + y^2 -1= 0[/tex]

Let's compute the partial derivatives

[tex]f_x=1\ ,f_y=2\ ,f_z=11\ \\g_x=1\ ,g_y=-1\ ,g_z=1\\h_x=2x\ ,h_y=2y\ ,h_z=0[/tex]

The Lagrange condition leads to

[tex]1=\lambda (1)+\mu (2x)\\2=\lambda (-1)+\mu (2y)\\11=\lambda (1)+\mu (0)[/tex]

Operating and simplifying

[tex]1=\lambda+2x\mu\\2=-\lambda +2y\mu \\\lambda=11[/tex]

Replacing the value of [tex]\lambda[/tex] in the two first equations, we get

[tex]1=11+2x\mu\\2=-11 +2y\mu[/tex]

From the first equation

[tex]\displaystyle 2\mu=\frac{-10}{x}[/tex]

Replacing into the second

[tex]\displaystyle 13=y\frac{-10}{x}[/tex]

Or, equivalently

[tex]13x=-10y[/tex]

Squaring

[tex]169x^2=100y^2[/tex]

To solve, we use the restriction h

[tex]x^2 + y^2 = 1[/tex]

Multiplying by 100

[tex]100x^2 + 100y^2 = 100[/tex]

Replacing the above condition

[tex]100x^2 + 169x^2 = 100[/tex]

Solving for x

[tex]\displaystyle x=\pm \frac{10}{\sqrt{269}}[/tex]

We compute the values of y by solving

[tex]13x=-10y[/tex]

[tex]\displaystyle y=-\frac{13x}{10}[/tex]

For

[tex]\displaystyle x= \frac{10}{\sqrt{269}}[/tex]

[tex]\displaystyle y= -\frac{13}{\sqrt{269}}[/tex]

And for

[tex]\displaystyle x= -\frac{10}{\sqrt{269}}[/tex]

[tex]\displaystyle y= \frac{13}{\sqrt{269}}[/tex]

Finally, we get z using the other restriction

[tex]x - y + z = 1[/tex]

Or:

[tex]z = 1-x+y[/tex]

The first solution yields to

[tex]\displaystyle z = 1-\frac{10}{\sqrt{269}}-\frac{13}{\sqrt{269}}[/tex]

[tex]\displaystyle z = \frac{-23\sqrt{269}+269}{269}[/tex]

And the second solution gives us

[tex]\displaystyle z = 1+\frac{10}{\sqrt{269}}+\frac{13}{\sqrt{269}}[/tex]

[tex]\displaystyle z = \frac{23\sqrt{269}+269}{269}[/tex]

Complete first solution:

[tex]\displaystyle x= \frac{10}{\sqrt{269}}\\\\\displaystyle y= -\frac{13}{\sqrt{269}}\\\\\displaystyle z = \frac{-23\sqrt{269}+269}{269}[/tex]

Replacing into f, we get

f(x,y,z)=-0.4

Complete second solution:

[tex]\displaystyle x= -\frac{10}{\sqrt{269}}\\\\\displaystyle y= \frac{13}{\sqrt{269}}\\\\\displaystyle z = \frac{23\sqrt{269}+269}{269}[/tex]

Replacing into f, we get

f(x,y,z)=2.4

The second solution maximizes f to 2.4