A flat loop of wire consisting of a single turn of cross-sectional area 7.80 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 3.30 T in 1.00 s. What is the resulting induced current if the loop has a resistance of 1.20 ?

Respuesta :

Answer:

Explanation:

Area of crossection, A = 7.80 cm²

Initial magnetic field, B = 0.5 T

Final magnetic field, B' = 3.3 T

Time, t = 1 s

resistance of the coil, R = 1.2 ohm

The induced emf is given by

[tex]e=\frac{d\phi}{dt}=A\frac{B' - B}{t}[/tex]

where, Ф is the rate of change of magnetic flux.

e = 7.80 x 10^-4 x (3.3 - 0.5) / 1

e = 2.184 mV

i = e/R

i = 2.184/1.2

i = 1.82 mA