This problem has missing information, so I've provided my own diagram below.
By Alternate Interior Angles:
[tex]m\angle 2=34^{\circ}[/tex]
Angles ∠6 and 48 degrees are supplementary:
[tex]m\angle 6 + 48^{\circ}=180^{\circ} \\ \\ m\angle 6 =180^{\circ}- 48^{\circ} \\ \\ m\angle 6 =132^{\circ}[/tex]
Internal angles of every triangle add up to 180 degrees:
[tex]m\angle 5+ m\angle 2 + m\angle 6 = 180^{\circ} \\ \\ m\angle 5+ 34^{\circ} + 48^{\circ} = 180^{\circ} \\ \\ m\angle 5= 180^{\circ}-34^{\circ}- 48^{\circ} \\ \\ m\angle 5=98^{\circ}[/tex]
Finally:
[tex]m\angle 2=34^{\circ} \\ \\ m\angle 5=98^{\circ} \\ \\ m\angle 6=132^{\circ}[/tex]