The switch in the circuit has been closed for a long time and is opened at t = 0.


a. Calculate the initial value of i.

b. Calculate the initial energy stored in the inductor.

c. What is the time constant of the circuit for t > 0?

d. What is the numerical expression for i(t) for t ≥ 0?

e. What percentage of the initial energy stored has been dissipated in the 4 Ω resistor 5ms after the switch has been opened?

Respuesta :

Answer:

a) i=-16A

b) E=1.28 J

c) T=2.5 m

d) i(t)=-16e^(-400*t)

e) E=1.26 J

Explanation:

The circuit is shown in the attached diagram:

a) at t=0, the circuit is in steady state and we have the following:

[tex](\frac{V-100}{1})+\frac{V}{20}+\frac{V}{5}=0\\ V(1+\frac{1}{20}+\frac{1}{5})=100[/tex]

Clearing V:

V=80 V

[tex]i=\frac{V}{S}=16A\\ i=-16A[/tex]

b) the initial energy stored is equal to:

[tex]E=\frac{1}{2}Li^{2}=\frac{1}{2}*10*16^{2}=1.28 J[/tex]

c) at t>0

[tex]T=\frac{L}{R}=\frac{10}{4}=2.5 m[/tex]

d) if t=∝, i=0

[tex]i(t)=i(\alpha )+(i(o)-i(\alpha ))e^\frac{-t}{T}=0+(16-0)e^{\frac{-t}{2.5x10^{-5} } }[/tex]

for t≥0

[tex]i(t)=-16e^{-400t}[/tex]

e) the energy disipation in 4Ω is equal to:

[tex]E=\int\limits^5_0 {i^{2}*4dt } \,\\ E=\int\limits^5_0 {(-16e^{-400t})^{2} *4dt } \,\\ E=1024\int\limits^5_0 {e^{-800t} } \, dt \\E=\frac{1024}{-800}e^{-800t}|(5-0)=1.26 J[/tex]

Ver imagen lcoley8