Respuesta :
Answer:
(1) Total change in Entropy change = [tex]-4.67[/tex] [tex]\frac{J}{K}[/tex]
(2) Yes, energy transfer allowed by the first law of thermodynamics.
(3) No, energy transfer is not allowed by the second law of thermodynamics.
Explanation:
Given :
For one container
Mass of water [tex]m = 0.10[/tex] Kg
Temperature [tex]T _{1} =[/tex] 75°C
Another Temperature [tex]T_{2} =[/tex] 95°C
For other container
Mass of water [tex]m = 0.10[/tex] Kg
Temperature [tex]T_{1} =[/tex] 35°C
Another Temperature [tex]T_{2} =[/tex] 15°C
Specific heat of water [tex]C = 4180[/tex] [tex]\frac{J}{Kg C}[/tex]
From the formula of change in entropy in terms temperature,
[tex]dS = mC \ln \frac{T_{2} }{T_{1} }[/tex]
For one container,
[tex]dS_{1} = 0.1 \times 4180 \times \ln \frac{T_{2} }{T_{1} }[/tex]
Where [tex]T_{2} = 95+273 = 368[/tex] K, [tex]T_{1} = 75 + 273 = 348[/tex] K
[tex]dS_{1} = 23.38[/tex] [tex]\frac{J}{K}[/tex]
For another container,
[tex]dS_{2} = 0.1 \times 4180 \times \ln \frac{T_{2} }{T_{1} }[/tex]
Where [tex]T_{2} = 15 +273 = 288[/tex] K, [tex]T_{1} = 273 + 35 = 308[/tex] K
[tex]dS_{2} = -28.05[/tex] [tex]\frac{J}{K}[/tex]
Total change entropy,
[tex]\Delta S = 23.38 - 28.05 = -4.67[/tex] [tex]\frac{J}{K}[/tex]
Yes, energy transfer allowed by the first law of thermodynamics
No, energy transfer is not allowed by the second law of thermodynamics