During a 90-day monsoon season, daily rainfall can be modeled by sinusoidal functions. A low of 4 inches of rainfall was recorded on day 30, and overall the average daily rainfall was 8 inches. During what period was daily rainfall less than 5 inches?

Respuesta :

Answer:

[tex]25.4\,days \leq t \leq 34.6\,days[/tex]

Step-by-step explanation:

Let consider the following model:

[tex]c(t) = A \cdot \sin \left(\frac{2\pi \cdot t}{T} \right) + \bar c[/tex]

The average is given by the following formula:

[tex]\bar c = \frac{c_{min}+c_{max}}{2}[/tex]

The maximum value is:

[tex]c_{max} = 2 \cdot \bar c - c_{min}[/tex]

[tex]c_{max} = 2\cdot (8\,in) - 4\,in[/tex]

[tex]c_{max} = 12\,in[/tex]

Amplitude is:

[tex]A = 12\,in - 8\,in[/tex]

[tex]A = 4\,in[/tex]

The sine function has a periodicity of [tex]2\pi[/tex], where is minimum is reached at [tex]\theta = \frac{3\pi}{2}[/tex], when t = 30.  The period of the cycle is:

[tex]T = \frac{2\pi}{\frac{3}{2}\pi }\cdot (30)[/tex]

[tex]T = 40[/tex]

The complete expression is:

[tex]c(t) = 8\,in + 4\,in \cdot \sin \left(\frac{2\pi}{40}\cdot t \right)[/tex]

The times associated with [tex]c = 5\,in[/tex] are, respectively:

[tex]8\,in + 4\,in \cdot \sin \left(\frac{2\pi}{40}\cdot t \right) = 5\,in[/tex]

[tex]4\,in \cdot \sin \left(\frac{2\pi}{40}\cdot t \right) = -3\,in[/tex]

[tex]\sin \left(\frac{2\pi}{40}\cdot t \right) = -0.75[/tex]

[tex]t = \frac{40}{2\pi}\cdot \sin^{-1} (-0.75)[/tex]

Instants are, respectively:

[tex]t_{1} \approx 25.4\,days[/tex]

[tex]t_{2} \approx 34.6\,days[/tex]

Period is:

[tex]25.4\,days \leq t \leq 34.6\,days[/tex]