In the mobile m1=0.42 kg and m2=0.47 kg. What must the unknown distance to the nearest tenth of a cm be if the masses are to be balanced? The answer is 13.4 In the mobile what is the value for m3 to the nearest hundredth of a kilogram?

Respuesta :

Complete Question

The complete question is shown on the first uploaded image

Answer:

Explanation:

From he question we are told that

    The first mass is   [tex]m_1 = 0.42kg[/tex]

      The second mass is  [tex]m_2 = 0.47kg[/tex]

From the question we can see that at equilibrium the moment about the point where the  string  holding the bar (where [tex]m_1 \ and \ m_2[/tex] are hanged ) is attached is zero  

   Therefore we can say that

               [tex]m_1 * 15cm = m_2 * xcm[/tex]

Making x the subject of the formula  

                [tex]x = \frac{m_1 * 15}{m_2}[/tex]

                    [tex]= \frac{0.42 * 15}{0.47}[/tex]

                     [tex]x = 13.4 cm[/tex]

Looking at the diagram we can see that the tension T  on the string holding the bar where [tex]m_1 \ and \ m_2[/tex] are hanged  is as a result of the masses ([tex]m_1 + m_2[/tex])

     Also at equilibrium the moment about the point where the string holding the bar (where ([tex]m_1 +m_2[/tex])  and  [tex]m_3[/tex] are hanged ) is attached is  zero

   So basically

          [tex](m_1 + m_2 ) * 20 = m_3 * 30[/tex]

          [tex](0.42 + 0.47) * 20 = 30 * m_3[/tex]

 Making [tex]m_3[/tex] subject

          [tex]m_3 = \frac{(0.42 + 0.47) * 20 }{30 }[/tex]

                [tex]m_3 = 0.59 kg[/tex]

Ver imagen okpalawalter8