Answer:
Step-by-step explanation:
Given the surd function [tex]\frac{7}{3\sqrt{3}-2\sqrt{2} } }[/tex]
To rationalize the function, we will multiply the numerator and denominator of the function by the conjugate of the denominator. The conjugate of the denominator is given as 3√3+2√2
On rationalizing we have;
[tex]\frac{7}{3\sqrt{3}-2\sqrt{2} } }*\frac{3\sqrt{3}+2\sqrt{2} }{3\sqrt{3}+2\sqrt{2}} \\[/tex]
[tex]= 7(3\sqrt{3}+2\sqrt{2} )/27+6\sqrt{6}-6\sqrt{6} -8[/tex]
[tex]= \frac{7(3\sqrt{3}+2\sqrt{2} )}{27-8}\\=\frac{7(3\sqrt{3}+2\sqrt{2} )}{19}\\[/tex]
The denominator of the surd function after rationalizing is 19