Respuesta :
Answer:
[tex]{0.51 \mathrm{m} / \mathrm{s}^{2}}[/tex]
Explanation:
Angular acceleration
[tex]\begin{aligned}
\alpha &=\frac{\left(\omega_{f}-\omega_{i}\right)}{t} \\
\omega_{i} &=0 \\
\omega_{f} &=4.30 \mathrm{rev} / \mathrm{s} \\
&=4.30 \times 2 \pi \mathrm{rad} / \mathrm{s} \\
&=27.02 \mathrm{rad} / \mathrm{s} \\
\alpha &=\frac{(27.02-0)}{3.15} \\
&=8.57 \mathrm{m} / \mathrm{s}^{2}
\end{aligned}[/tex]
a)Tangential acceleration
[tex]\begin{aligned}
a &=r \alpha \\
&=\frac{12}{2} \times 10^{-2} \times 8.57 \\
a &=0.51 \mathrm{m} / \mathrm{s}^{2}
\end{aligned}[/tex]
The tangential acceleration of the disc is [tex]{0.51 \mathrm{m} / \mathrm{s}^{2}}[/tex]
This question involves the concepts of the equations of motion for angular motion.
The tangential acceleration of a point on the outer rim of the disk at the moment when its angular speed reaches 2 rev/s will be "0.532 m/s²".
First, we will use the first equation of motion for the angular motion to find out the angular acceleration:
[tex]\alpha=\frac{\omega_f-\omega_i}{t}[/tex]
where,
[tex]\alpha[/tex] = angular acceleration = ?
[tex]\omega_f[/tex] = final angular speed = (4.3 rev/s)[tex](\frac{2\pi\ rad}{1\ rev})[/tex] = 27.02 rad/s
[tex]\omega_i[/tex] = initial angular speed = 0 rad/s
t = time taken = 3.05 s
Therefore,
[tex]\alpha =\frac{27.02\ rad/s-0\ rad/s}{3.05\ s}\\\\\alpha= 8.86\ rad/s^2[/tex]
Now, the tangential acceleration can be given as follows:
[tex]a=r\alpha\\a=(\frac{diameter}{2})(8.86\ rad/s^2)\\\\a=(\frac{0.12\ m}{2})(8.86\ rad/s^2)\\\\[/tex]
a = 0.532 m/s²
Learn more about the angular motion here:
brainly.com/question/14979994?referrer=searchResults
The attached picture shows the angular equations of motion.
