Respuesta :
Answer:
3x^3+3x^2-30x -48
Step-by-step explanation:
we apply distributive property
3(x + 2)(x^2 − x − 8)
so we have:
(3*x+3*2)(x^2 − x − 8)
(3x+6)(x^2 − x − 8)
3x*x^2 - 3x*x -3x*8 + 6*x^2 -6*x -6*8
3x^3-3x^2-24x +6x^2 -6x -48
3x^3+3x^2-30x -48
3x^3+3x^2-30x -48
Step-by-step explanation:
we apply distributive property
3(x + 2)(x^2 − x − 8)
so we have:
(3*x+3*2)(x^2 − x − 8)
(3x+6)(x^2 − x − 8)
3x*x^2 - 3x*x -3x*8 + 6*x^2 -6*x -6*8
3x^3-3x^2-24x +6x^2 -6x -48
3x^3+3x^2-30x -48
Answer:
3x³ + 3x² - 30x - 48
Step-by-step explanation:
3(x + 2)(x² - x - 8) ← distribute (x + 2) by 3
= (3x + 6)(x² - x - 8)
each term in the second factor is multiplied by each term in the first factor
= 3x(x² - x - 8) + 6(x² - x - 8) ← distribute both parenthesis
= 3x³ - 3x² - 24x + 6x² - 6x - 48 ← collect like terms
= 3x³ + 3x² - 30x - 48