Answer:
a) f(x) = x² -9
function is an even function
b) g(x) = |x -3|
function is an even function
c) f(x)= x / x²-1
function is odd function
d) g(x) = x + x²
Given function is not an even not odd function
This function is neither even or odd
Step-by-step explanation:
Explanation:-
a) Given f(x) = x² -9
Even function
If f(-x) = f(x) , then the function is even function.
f(-x) = (-x)² -9
= x² -9
= f(x)
f(-x) = f(x)
∴ Given function is an even function
b)
Given g(x) = |x -3|
Even function
If g(-x) = g(x) , then the function is even function.
g(-x) = |-(x-3)|
= |x-3|
g(-x) = g(x)
∴ Given function is an even function
c)
odd function
If f(-x) =- f(x) , then the function is odd function.
f(-x) = [tex]f(-x) = \frac{-x}{(-x)^{2}+1 } = \frac{-x}{x^{2}+1 } = - f(x)[/tex]
= -f(x)
f(-x) = -f(x)
∴ Given function is odd function
d)
If g(-x) = g(x) , then the function is even function.
g(x) = x + x²
g(-x) = -x + (-x)²
= - (x - x²)
This is not either even or odd function
∴ Given function is neither function