Find the area of the figure to the nearest tenth, if necessary.

Answer:
36 ft²
Step-by-step explanation:
Split the figure into two shapes.
Area of figure = Area of rectangle + Area of triangle
Area of rectangle:
[tex]length \times width[/tex]
[tex]length=8\\width=4[/tex]
[tex]8 \times 4 = 32[/tex]
Area of triangle:
[tex]\frac{base \times height}{2}[/tex]
[tex]base=8-4=4\\height=2[/tex]
[tex]\frac{4 \times 2}{2}[/tex]
[tex]\frac{8}{2} =4[/tex]
Area of figure = [tex]32 + 4 = 36[/tex]
Answer:
Option C is the correct option.
Step-by-step explanation:
Solution,
Height = 2 ft
Base = 8 - 4 = 4 ft
Finding the area of ∆ ABC :
[tex] \frac{1}{2} \times b \times h[/tex]
[tex] = \frac{1}{2} \times 4 \times 2[/tex]
[tex] = 4 \: {ft}^{2} [/tex]
Finding the area of rectangle BDEF:
[tex]length \: \times breadth[/tex]
[tex] = 8 \times 4[/tex]
[tex] = 32 \: {ft}^{2} [/tex]
Total area :
Area of triangle ∆ABC + Area of rectangle BDEF
[tex] = 4 \: {ft}^{2} + 32 { \: ft}^{2} [/tex]
[tex] = 36 \: {ft}^{2} [/tex]
Hope this helps...
Good luck on your assignment..