Answer:
F'(-3) = 18
Step-by-step explanation:
Let g(x) = u and apply the chain rule
[tex]F(x)=f(g(x))=f(u)\\F'(x)=\frac{df(u)}{du}[/tex]
[tex]\frac{du}{dx}=g'(x)[/tex]
[tex]\frac{df(u)}{du}*\frac{du}{dx} = \frac{df(u)}{dx}\\F'(x)= \frac{df(u)}{du}*g'(x)\\F'(x)= f'(u)*g'(x)\\F'(x)= f'(g(x))*g'(x)[/tex]
We now have all of the necessary definite values to solve the expression for x= -3:
[tex]F'(-3)= f'(g(-3))*g'(-3)\\F'(-3)= f'(-4)*6\\F'(-3)= 3*6\\F'(-3)= 18[/tex]
Finally, we have that F'(-3)= 18.