Answer:
The the intensity at an 11° angle to the axis in terms of the intensity of the central maximum is
[tex]I_c = \frac{I}{I_o} =8.48 *10^{-8}[/tex]
Explanation:
From the question we are told that
The width of the slit is [tex]D = 0.3 \ mm = 0.3 *10^{-3} \ m[/tex]
The wavelength is [tex]\lambda = 254 \ nm = 254 *10^{-9} \ m[/tex]
The angle is [tex]\theta = 11^o[/tex]
The intensity of at [tex]11^o[/tex] to the axis in terms of the intensity of the central maximum. is mathematically represented as
[tex]I_c = \frac{I}{I_o} = [ \frac{sin \beta }{\beta }] ^2[/tex]
Where [tex]\beta[/tex] is mathematically represented as
[tex]\beta = \frac{D sin (\theta ) * \pi}{\lambda }[/tex]
substituting values
[tex]\beta = \frac{0.3 *10^{-3} sin (11 ) * 3.142}{254 *10^{-9} }[/tex]
[tex]\beta = 708.1 \ rad[/tex]
So
[tex]I_c = \frac{I}{I_o} = [ \frac{sin (708.1) }{(708.1)}] ^2[/tex]
[tex]I_c = \frac{I}{I_o} =8.48 *10^{-8}[/tex]