A −3.0 nC charge is on the x-axis at x=−9 cm and a +4.0 nC charge is on the x-axis at x=16 cm. At what point or points on the y-axis is the electric potential zero?

Respuesta :

Answer:

y = 10.2 m

Explanation:

It is given that,

Charge, [tex]q_1=-3\ nC[/tex]

It is placed at a distance of 9 cm at x axis

Charge, [tex]q_2=+4\ nC[/tex]

It is placed at a distance of 16 cm at x axis

We need to find the point on the y-axis where the electric potential zero. The net potential on y-axis is equal to 0. So,

[tex]\dfrac{kq_1}{r_1}+\dfrac{kq_2}{r_2}=0[/tex]

Here,

[tex]r_1=\sqrt{y^2+9^2} \\\\r_2=\sqrt{y^2+15^2}[/tex]

So,

[tex]\dfrac{kq_1}{r_1}=-\dfrac{kq_2}{r_2}\\\\\dfrac{q_1}{r_1}=-\dfrac{q_2}{r_2}\\\\\dfrac{-3\ nC}{\sqrt{y^2+81} }=-\dfrac{4\ nC}{\sqrt{y^2+225} }\\\\3\times \sqrt{y^2+225}=4\times \sqrt{y^2+81}[/tex]

Squaring both sides,

[tex]3\times \sqrt{y^2+225}=4\times \sqrt{y^2+81}\\\\9(y^2+225)=16\times (y^2+81)\\\\9y^2+2025=16y^2-+1296\\\\2025-1296=7y^2\\\\7y^2=729\\\\y=10.2\ m[/tex]

So, at a distance of 10.2 m on the y axis the electric potential equals 0.

At a distance of 10.2 m, the electric potential equals zero.

According to the question,

Charge,

  • [tex]q_1 = -3 \ nC[/tex] (9 cm at x-axis)
  • [tex]q_2 = +4 \ nC[/tex] (16 cm at x-axis)

Now,

→ [tex]\frac{kq_1}{r_1} +\frac{kq_2}{r_2} =0[/tex]

or,

→ [tex]\frac{kq_1}{r_1} =-\frac{kq_2}{r_2}[/tex]

→  [tex]\frac{q_1}{r_1} = \frac{q_2}{r_2}[/tex]

here,

[tex]r_1 = \sqrt{y^2+81}[/tex]

[tex]r^2 = \sqrt{y^2+225}[/tex]

By substituting the values,

→      [tex]\frac{-3 }{\sqrt{y^2+225} } = -\frac{4}{\sqrt{y^2+225} }[/tex]

By applying cross-multiplication,

[tex]3\times \sqrt{y^2+225} = 4\times \sqrt{y^2+81}[/tex]

By squaring both sides, we get

→  [tex]9(y^2+225) = 16(y^2+81)[/tex]

    [tex]9y^2+2025 = 16 y^2+1296[/tex]

   [tex]2025-1296=7y^2[/tex]

               [tex]7y^2=729[/tex]

                  [tex]y = 10.2 \ m[/tex]

Thus the solution above is correct.

Learn more about charge here:

https://brainly.com/question/12437696