Respuesta :
Answer:
y = 10.2 m
Explanation:
It is given that,
Charge, [tex]q_1=-3\ nC[/tex]
It is placed at a distance of 9 cm at x axis
Charge, [tex]q_2=+4\ nC[/tex]
It is placed at a distance of 16 cm at x axis
We need to find the point on the y-axis where the electric potential zero. The net potential on y-axis is equal to 0. So,
[tex]\dfrac{kq_1}{r_1}+\dfrac{kq_2}{r_2}=0[/tex]
Here,
[tex]r_1=\sqrt{y^2+9^2} \\\\r_2=\sqrt{y^2+15^2}[/tex]
So,
[tex]\dfrac{kq_1}{r_1}=-\dfrac{kq_2}{r_2}\\\\\dfrac{q_1}{r_1}=-\dfrac{q_2}{r_2}\\\\\dfrac{-3\ nC}{\sqrt{y^2+81} }=-\dfrac{4\ nC}{\sqrt{y^2+225} }\\\\3\times \sqrt{y^2+225}=4\times \sqrt{y^2+81}[/tex]
Squaring both sides,
[tex]3\times \sqrt{y^2+225}=4\times \sqrt{y^2+81}\\\\9(y^2+225)=16\times (y^2+81)\\\\9y^2+2025=16y^2-+1296\\\\2025-1296=7y^2\\\\7y^2=729\\\\y=10.2\ m[/tex]
So, at a distance of 10.2 m on the y axis the electric potential equals 0.
At a distance of 10.2 m, the electric potential equals zero.
According to the question,
Charge,
- [tex]q_1 = -3 \ nC[/tex] (9 cm at x-axis)
- [tex]q_2 = +4 \ nC[/tex] (16 cm at x-axis)
Now,
→ [tex]\frac{kq_1}{r_1} +\frac{kq_2}{r_2} =0[/tex]
or,
→ [tex]\frac{kq_1}{r_1} =-\frac{kq_2}{r_2}[/tex]
→ [tex]\frac{q_1}{r_1} = \frac{q_2}{r_2}[/tex]
here,
[tex]r_1 = \sqrt{y^2+81}[/tex]
[tex]r^2 = \sqrt{y^2+225}[/tex]
By substituting the values,
→ [tex]\frac{-3 }{\sqrt{y^2+225} } = -\frac{4}{\sqrt{y^2+225} }[/tex]
By applying cross-multiplication,
[tex]3\times \sqrt{y^2+225} = 4\times \sqrt{y^2+81}[/tex]
By squaring both sides, we get
→ [tex]9(y^2+225) = 16(y^2+81)[/tex]
[tex]9y^2+2025 = 16 y^2+1296[/tex]
[tex]2025-1296=7y^2[/tex]
[tex]7y^2=729[/tex]
[tex]y = 10.2 \ m[/tex]
Thus the solution above is correct.
Learn more about charge here:
https://brainly.com/question/12437696