Respuesta :
Answer: { 0.5995, 0.8025 }
Step-by-step explanation:
Given that
Estimates Std. Error t value Pr(>/t/)
Intercept: -90.020 16.702 -5.390 0.000
length : 0.701 0.044 15.798 0.000
Now using the given information to compute a 95% confidence interval for the slope:
We use the formula
β₁ ± tₐ/₂, ₙ₋₂ × ∝β₁
So we know that number of values (n) = 10
therefore error of degree of freedom df = n -2 = (10-2) = 8
Level of significance α ( 1 - 0.95 ) = 0.05
so tₐ/₂, ₙ₋₂ = t ₍₀.₀₅/₂, ₁₀₋₂
t ₀.₀₂₅, ₈ = 2.306 (critical value)
From the given table ( regression analysis output)
slope regression β₁ = 0.701
The standard error of the slope is Sβ₁ = 0.044
Let “the maximum size of salmonids consumed by a northern squaw fish” be the response variable and “squawfish length” be the explanatory variable.
The 95% confidence interval for the slope of the regression is:
β₁ ± tₐ/₂, ₙ₋₂ × ∝β₁ = 0.701 ± 2.306 (0.044)
= 0.701 ± 0.101464
= { 0.701 - 0.101464, 0.701 + 0.101464 }
= { 0.599536, 0.802464 } ≈ {0.5995, 0.8025 }
The confidence interval of the slope is (0.599, 0.803)
The sample size is given as:
[tex]\mathbf{n = 10}[/tex]
The confidence interval is given as:
[tex]\mathbf{CI = 95\%}[/tex]
Start by calculating the degrees of freedom
[tex]\mathbf{df = n - 2}[/tex]
So, we have:
[tex]\mathbf{df = 10 - 2}[/tex]
[tex]\mathbf{df = 8}[/tex]
The level of significance is calculated as:
[tex]\mathbf{\alpha = 1 - CI}[/tex]
So, we have:
[tex]\mathbf{\alpha = 1 - 95\%}[/tex]
[tex]\mathbf{\alpha = 0.05}[/tex]
The critical value at 0.05 level of significance and 8 degrees of freedom is:
[tex]\mathbf{t_{\alpha} =2.306}[/tex]
The confidence interval of the slope is then calculated as:
[tex]\mathbf{CI = \beta_1 \pm t_\alpha \times S\beta_1}[/tex]
From the question, we have:
[tex]\mathbf{S\beta_1 = 0.044}[/tex] --- standard error of the slope
[tex]\mathbf{\beta_1 = 0.701}[/tex] -- the slope
So, the equation becomes
[tex]\mathbf{CI = \beta_1 \pm t_\alpha \times S\beta_1}[/tex]
[tex]\mathbf{CI = 0.701 \pm 2.306 \times 0.044}[/tex]
[tex]\mathbf{CI = 0.701 \pm 0.102}[/tex]
Split
[tex]\mathbf{CI = (0.701 - 0.102,0.701 + 0.102)}[/tex]
[tex]\mathbf{CI = (0.599,0.803)}[/tex]
Hence, the confidence interval of the slope is (0.599, 0.803)
Read more about confidence intervals at:
https://brainly.com/question/24131141