contestada

Help me fast please
give the coordinates(enclose the coordinates in parentheses) of the
foci,vertices,and convertices of the ellipse with equation x²/169 + y²/25 = 1​

Respuesta :

Answer:

[tex]\frac{x^2}{169} +\frac{y^2}{25}=1[/tex]

If we compare this to the general expression for an ellipse given by:

[tex]\frac{(x-h)^2}{a^2} +\frac{(y-k)^2}{b^2}=1[/tex]

We can see that the vertex is [tex] V=(0,0)[/tex]

And we can find the values of a and b like this:

[tex] a=\sqrt{169}=13, b=\sqrt{25}=5[/tex]

in order to find the foci we can find the value of c

[tex] c =\sqrt{169-25}=\sqrt{144}=12[/tex]

The two focis are (12,0) and (-12,0)

The convertices  for this case are: (13,0) and (-13,0) on the x axis

And for the y axis (0,5) and (0,-5)

Step-by-step explanation:

For this problem we have the following equation given:

[tex]\frac{x^2}{169} +\frac{y^2}{25}=1[/tex]

If we compare this to the general expression for an ellipse given by:

[tex]\frac{(x-h)^2}{a^2} +\frac{(y-k)^2}{b^2}=1[/tex]

We can see that the vertex is [tex] V=(0,0)[/tex]

And we can find the values of a and b like this:

[tex] a=\sqrt{169}=13, b=\sqrt{25}=5[/tex]

in order to find the foci we can find the value of c

[tex] c =\sqrt{169-25}=\sqrt{144}=12[/tex]

The two focis are (12,0) and (-12,0)

The convertices  for this case are: (13,0) and (-13,0) on the x axis

And for the y axis (0,5) and (0,-5)