For the given term, find the binomial raised to the power, whose expansion it came from: 15(5)^2 (-1/2 x) ^4
A. (5+1/2 x)^6
B. (Y- 1/2 x) ^6
C. (5- 1/2 x) ^6
D. (-5 + (- 1/2 x))^6

Respuesta :

Answer:

C. [tex](5-\frac{1}{2})^6[/tex]

Step-by-step explanation:

Given

[tex]15(5)^2(-\frac{1}{2})^4[/tex]

Required

Determine which binomial expansion it came from

The first step is to add the powers of he expression in brackets;

[tex]Sum = 2 + 4[/tex]

[tex]Sum = 6[/tex]

Each term of a binomial expansion are always of the form:

[tex](a+b)^n = ......+ ^nC_ra^{n-r}b^r+.......[/tex]

Where n = the sum above

[tex]n = 6[/tex]

Compare [tex]15(5)^2(-\frac{1}{2})^4[/tex] to the above general form of binomial expansion

[tex](a+b)^n = ......+15(5)^2(-\frac{1}{2})^4+.......[/tex]

Substitute 6 for n

[tex](a+b)^6 = ......+15(5)^2(-\frac{1}{2})^4+.......[/tex]

[Next is to solve for a and b]

From the above expression, the power of (5) is 2

Express 2 as 6 - 4

[tex](a+b)^6 = ......+15(5)^{6-4}(-\frac{1}{2})^4+.......[/tex]

By direct comparison of

[tex](a+b)^n = ......+ ^nC_ra^{n-r}b^r+.......[/tex]

and

[tex](a+b)^6 = ......+15(5)^{6-4}(-\frac{1}{2})^4+.......[/tex]

We have;

[tex]^nC_ra^{n-r}b^r= 15(5)^{6-4}(-\frac{1}{2})^4[/tex]

Further comparison gives

[tex]^nC_r = 15[/tex]

[tex]a^{n-r} =(5)^{6-4}[/tex]

[tex]b^r= (-\frac{1}{2})^4[/tex]

[Solving for a]

By direct comparison of [tex]a^{n-r} =(5)^{6-4}[/tex]

[tex]a = 5[/tex]

[tex]n = 6[/tex]

[tex]r = 4[/tex]

[Solving for b]

By direct comparison of [tex]b^r= (-\frac{1}{2})^4[/tex]

[tex]r = 4[/tex]

[tex]b = \frac{-1}{2}[/tex]

Substitute values for a, b, n and r in

[tex](a+b)^n = ......+ ^nC_ra^{n-r}b^r+.......[/tex]

[tex](5+\frac{-1}{2})^6 = ......+ ^6C_4(5)^{6-4}(\frac{-1}{2})^4+.......[/tex]

[tex](5-\frac{1}{2})^6 = ......+ ^6C_4(5)^{6-4}(\frac{-1}{2})^4+.......[/tex]

Solve for [tex]^6C_4[/tex]

[tex](5-\frac{1}{2})^6 = ......+ \frac{6!}{(6-4)!4!)}*(5)^{6-4}(\frac{-1}{2})^4+.......[/tex]

[tex](5-\frac{1}{2})^6 = ......+ \frac{6!}{2!!4!}*(5)^{6-4}(\frac{-1}{2})^4+.......[/tex]

[tex](5-\frac{1}{2})^6 = ......+ \frac{6*5*4!}{2*1*!4!}*(5)^{6-4}(\frac{-1}{2})^4+.......[/tex]

[tex](5-\frac{1}{2})^6 = ......+ \frac{6*5}{2*1}*(5)^{6-4}(\frac{-1}{2})^4+.......[/tex]

[tex](5-\frac{1}{2})^6 = ......+ \frac{30}{2}*(5)^{6-4}(\frac{-1}{2})^4+.......[/tex]

[tex](5-\frac{1}{2})^6 = ......+15*(5)^{6-4}(\frac{-1}{2})^4+.......[/tex]

[tex](5-\frac{1}{2})^6 = ......+15(5)^{6-4}(\frac{-1}{2})^4+.......[/tex]

[tex](5-\frac{1}{2})^6 = ......+15(5)^2(\frac{-1}{2})^4+.......[/tex]

Check the list of options for the expression on the left hand side

The correct answer is [tex](5-\frac{1}{2})^6[/tex]