Answer:
y = -[tex]\frac{1}{2}[/tex]x + 10
Step-by-step explanation:
To find the equation of a line that passes through the point (8,6) and perpendicular to the equation 2x - y = 4, we will follow the steps below:
first write the equation 2x - y = 4 in a standard form
we will find the slope of our equation using this equation
2x - y = 4
y = 2x -4
comparing the above with
y = mx + c
m = 2
[tex]m_{1}[/tex][tex]m_{2}[/tex] = -1 ( slope of perpendicular equations)
2[tex]m_{2}[/tex] = -1
[tex]m_{2}[/tex] = -1/2
our slope m = -1/2
We can now go ahead and form our equation
[tex]x_{1}[/tex] =8 [tex]y_{1}[/tex] =6
y-[tex]y_{1}[/tex] = m (x-[tex]x_{1}[/tex])
y-6 = -[tex]\frac{1}{2}[/tex](x-8)
y-6 = -[tex]\frac{1}{2}[/tex]x + 4
y= -[tex]\frac{1}{2}[/tex]x+4+6
y = -[tex]\frac{1}{2}[/tex]x + 10