Answer:
Step-by-step explanation:
Given data : 2x , x , 2x - 11 , x - 3
Mean = 4
N ( number of items ) = 4
Σx = 2x + x + 2x - 11 + x - 3
To find : value of x
Finding the value of x
We know that ,
Mean = [tex] \sf{ \frac{Σx}{n} }[/tex]
plug the values
⇒[tex] \sf{4 = \frac{2x + x + 2x - 11 + x - 3}{4} }[/tex]
Collect like terms
⇒[tex] \sf{4 = \frac{6x - 14}{4 }}[/tex]
Apply cross product property
⇒[tex] \sf{6x - 14 = 16}[/tex]
Move 14 to right hand side and change it's sign
⇒[tex] \sf{6x = 16 + 14}[/tex]
Add the numbers
⇒[tex] \sf{6x = 30}[/tex]
Divide both sides of the equation by 6
⇒[tex] \sf{ \frac{6x}{6} = \frac{30}{6} }[/tex]
Calculate
⇒[tex] \sf{x = 5}[/tex]
Hope I helped!!
Best regards!!!