Respuesta :

Answer:

[tex] \boxed{ \bold{ \huge{ \boxed{ \sf{x = 5}}}}}[/tex]

Step-by-step explanation:

Given data : 2x , x , 2x - 11 , x - 3

Mean = 4

N ( number of items ) = 4

Σx = 2x + x + 2x - 11 + x - 3

To find : value of x

Finding the value of x

We know that ,

Mean = [tex] \sf{ \frac{Σx}{n} }[/tex]

plug the values

⇒[tex] \sf{4 = \frac{2x + x + 2x - 11 + x - 3}{4} }[/tex]

Collect like terms

⇒[tex] \sf{4 = \frac{6x - 14}{4 }}[/tex]

Apply cross product property

⇒[tex] \sf{6x - 14 = 16}[/tex]

Move 14 to right hand side and change it's sign

⇒[tex] \sf{6x = 16 + 14}[/tex]

Add the numbers

⇒[tex] \sf{6x = 30}[/tex]

Divide both sides of the equation by 6

⇒[tex] \sf{ \frac{6x}{6} = \frac{30}{6} }[/tex]

Calculate

⇒[tex] \sf{x = 5}[/tex]

Hope I helped!!

Best regards!!!