Let Ebe the set of all even positive integers in the universe Zof integers, and XE : Z R be the characteristic function of E.
Then
1. XE(2) =
2. XP(-2) =
3. {z 62: XE() = 1} =

Respuesta :

Answer:

[tex]\mathbf{X_E (2) = 1}[/tex]

[tex]\mathbf{X_E (-2) = 0 }[/tex]  

[tex]\mathbf{\{ x \in Z: X_E(x) = 1\} = E}[/tex]

Step-by-step explanation:

Let E be the set of all even positive integers in the universe Z of integers,

i.e

E = {2,4,6,8,10 ....∞}

[tex]X_E : Z \to R[/tex] be the characteristic function of E.

[tex]X_E(x) = \left \{ {{1 \ if \ x \ \ is \ an \ element \ of \ E} \atop {0 \ if \ x \ \ is \ not \ an \ element \ of \ E}} \right.[/tex]

For XE(2)

[tex]\mathbf{X_E (2) = 1}[/tex]  since x is an element of E (i.e the set of all even numbers)

For XE(-2)

[tex]\mathbf{X_E (-2) = 0 }[/tex]   since  - 2 is less than 0 , and -2 is not an element of E

For { x ∈ Z: XE(x) = 1}

This can be read as:

x which is and element of Z such that X is also an element of x which is equal to 1.

[tex]\{ x \in Z: X_E(x) = 1\} = \{ x \in Z | x \in E\} \\ \\ \mathbf{\{ x \in Z: X_E(x) = 1\} = E}[/tex]

E = {2,4,6,8,10 ....∞}