The vertex of this parabola is at 2, -1 When the y-value is 0 the x value is 5 what is the coefficient of the squared term in the parabola equation.

A. -3
B. -4
C. 4
D. 3

Respuesta :

Answer:

[tex]\large \boxed{\sf \frac{1}{9}}[/tex]

Step-by-step explanation:

[tex]\sf y=a(x-h)^2+k[/tex]

[tex]\sf Vertex = (h,k)[/tex]

y-value is 0 and the x value is 5

h = 2

k = -1

[tex]\sf 0=a(5-2)^2+-1[/tex]

Solve for [tex]\sf a[/tex] (the coefficient of the squared term).

[tex]\sf 0=a(3)^2+-1[/tex]

[tex]\sf 0=9a-1[/tex]

[tex]\sf 9a=1[/tex]

[tex]\displaystyle \sf a=\frac{1}{9}[/tex]

The coefficient of the squared term in the parabola equation is 1/9.

Answer:

Fot this parabola the coefficient for squared term is 7

Step-by-step explanation:

The formula for vertex equation is:

x = a*(y-h)^{2}+kx=a∗(y−h)

2

+k

if vertex is at (-3,-1) and in the formula the vertex is (k,h), we replace this values

x = a*(y +1)^{2} -3x=a∗(y+1)

2

−3

The other point of this parabola is (4,0), so we replace it in the formula below:

4 = a*(0 + 1)^{2} -34=a∗(0+1)

2

−3

4 = a*(1)-34=a∗(1)−3

4 +3= a*(1)4+3=a∗(1)

a=7a=7

Ver imagen marnie16