Respuesta :

Answer:

k = -3

k =5

Step-by-step explanation:

[tex]d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\d = 5\\(-1,1) =(x_1,y_1)\\(2,k)=(x_2,y_2)\\[/tex]

[tex]5=\sqrt{\left(2-\left(-1\right)\right)^2+\left(k-1\right)^2}\\\\\mathrm{Square\:both\:sides}:\quad 25=k^2-2k+10\\25=k^2-2k+10\\\\\mathrm{Solve\:}\:25=k^2-2k+10:\\k^2-2k+10=25\\\\\mathrm{Subtract\:}25\mathrm{\:from\:both\:sides}\\k^2-2k+10-25=25-25\\k^2-2k-15=0\\\\\mathrm{Solve\:by\:factoring}\\\\\mathrm{Factor\:}k^2-2k-15:\quad \left(k+3\right)\left(k-5\right)\\\mathrm{Solve\:}\:k+3=0:\quad k=-3\\[/tex]

[tex]\mathrm{Solve\:}\:k-5=0:\quad k=5\\\\k =5 , k=-3[/tex]

A = (-1, 1) and B = (2, k) so:

[tex]d(A,B)=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}=\sqrt{(2-(-1))^2+(k-1)^2}=\\\\=\sqrt{3^2+(k-1)^2}=\sqrt{9+k^2-2k+1}=\sqrt{k^2-2k+10}\\\\\\d(A,B)=5\\\\\sqrt{k^2-2k+10}=5\quad|(\ldots)^2\\\\\big|k^2-2k+10\big|=25\\\\k^2-2k+10=25\qquad\vee\qquad k^2-2k+10=-25\\\\k^2-2k-15=0\qquad\vee\qquad k^2-2k+35=0\\\\\\\Delta_1=(-2)^2-4\cdot1\cdot(-15)=64>0\qquad\text{two solutions}\\\\\Delta_2=(-2)^2-4\cdot1\cdot35=-136<0\qquad\text{no solutions}\\\\\\k_1=\dfrac{2-\sqrt{64}}{2}=\dfrac{2-8}{2}=\dfrac{-6}{2}=\boxed{-3}[/tex]

[tex]k_2=\dfrac{2+\sqrt{64}}{2}=\dfrac{2+8}{2}=\dfrac{10}{2}=\boxed{5}[/tex]