Space
contestada

Find the sigma notation of the following sum:
[tex][(\frac{2}{n})^3-\frac{2}{n} ](\frac{2}{n} )+...+[(\frac{2n}{n} )^3-\frac{2n}{n} ](\frac{2}{n} )[/tex]

Respuesta :

Answer:

[tex]\displaystyle \frac{2}{n} \sum_{i = 1}^{n} \left(\left(\frac{2i}{n}\right)^3 - \frac{2i}{n}\right)[/tex]

Step-by-step explanation:

We have the sum:

[tex]\displaystyle \left[\left(\frac{2}{n}\right)}^3-\frac{2}{n}\right]\left(\frac{2}{n}\right)+...+\left[ \left(\frac{2n}{n}\right)^3-\frac{2n}{n}\right]\left(\frac{2}{n}\right)[/tex]

And we want to find the sigma notation that represents the sum.

Note that the leftmost term is the first term while the rightmost term is the last term.

n is the number of terms. Therefore, (2 / n) will stay constant. Hence, we can factor it out of the series:

[tex]\displaystyle =\frac{2}{n}\left(\left[\left(\frac{2}{n}\right)^3-\frac{2}{n}\right]+...+\left[\left(\frac{2n}{n}\right)^3-\frac{2n}{n}\right]\right)[/tex]

Notice the differences between the first term and the last term. The first term is given by [tex]\displaystyle \left(\frac{2}{n}\right)^3- \frac{2}{n}[/tex]. The last term is given by  [tex]\displaystyle \left(\frac{2n}{n}\right)^3- \frac{2n}{n}[/tex]. Because at the last term, our initial term i is equal to n, we can replace the extra n with i for our summation.

Therefore, we can write the following summation:

[tex]=\displaystyle \sum_{i=1}^{n} \frac{2}{n}\left(\left[\left(\frac{2i}{n}\right)^3-\frac{2i}{n}\right]\right)[/tex]

And since (2 / n) is constant:

[tex]\displaystyle = \frac{2}{n} \sum_{i = 1}^{n} \left(\left(\frac{2i}{n}\right)^3 - \frac{2i}{n}\right)[/tex]

Otras preguntas