Answer:
[tex]A = (32.7,47.7)[/tex]
Step-by-step explanation:
Given
[tex]M = (25.5,60.1)[/tex]
[tex]C = (18.3,72.5)[/tex]
Required
Determine the coordinates of A
Midpoint is calculated as thus:
[tex]M(x,y) = (\frac{A_x + C_x}{2}, \frac{A_y + C_y}{2})[/tex]
Substitute the given values
[tex](25.5,60.1) = (\frac{A_x + 18.3}{2}, \frac{A_y + 72.5}{2})[/tex]
Multiply through by 2
[tex]2 * (25.5,60.1) = (\frac{A_x + 18.3}{2}, \frac{A_y + 72.5}{2}) * 2[/tex]
[tex]2 * (25.5,60.1) = (A_x + 18.3, A_y + 72.5)[/tex]
[tex](51,120.2) = (A_x + 18.3, A_y + 72.5)[/tex]
By comparison:
[tex]A_x + 18.3 = 51[/tex]
[tex]A_y + 72.5 = 120.2[/tex]
[tex]A_x + 18.3 = 51[/tex]
[tex]A_x = 51 - 18.3[/tex]
[tex]A_x = 32.7[/tex]
[tex]A_y + 72.5 = 120.2[/tex]
[tex]A_y = 120.2 - 72.5[/tex]
[tex]A_y = 47.7[/tex]
Hence:
[tex]A = (32.7,47.7)[/tex]