solve the inequality and tell weather it has infinite
or no solutions[tex]\frac{3}{4}x+\frac{3}{4}-\frac{1}{2}x \geq -1[/tex]

Respuesta :

Answer:

[tex][-7,+\infty)[/tex]

Step-by-step explanation:

Inequalities

Solve the inequality:

[tex]\displaystyle \frac{3}{4}x+\frac{3}{4}-\frac{1}{2}x \ge -1[/tex]

Joining like terms:

[tex]\displaystyle \left(\frac{3}{4}-\frac{1}{2}\right) x+\frac{3}{4} \ge -1[/tex]

[tex]\displaystyle \frac{1}{4}x+\frac{3}{4} \ge -1[/tex]

Subtracting 3/4:

[tex]\displaystyle \frac{1}{4}x \ge -1-\frac{3}{4}[/tex]

Operating:

[tex]\displaystyle \frac{1}{4}x \ge -\frac{7}{4}[/tex]

Multiply by 4:

[tex]x \ge -7[/tex]

The solution expressed in interval form is:

[tex]\boxed{[-7,+\infty)}[/tex]