Answer:
[tex][-7,+\infty)[/tex]
Step-by-step explanation:
Inequalities
Solve the inequality:
[tex]\displaystyle \frac{3}{4}x+\frac{3}{4}-\frac{1}{2}x \ge -1[/tex]
Joining like terms:
[tex]\displaystyle \left(\frac{3}{4}-\frac{1}{2}\right) x+\frac{3}{4} \ge -1[/tex]
[tex]\displaystyle \frac{1}{4}x+\frac{3}{4} \ge -1[/tex]
Subtracting 3/4:
[tex]\displaystyle \frac{1}{4}x \ge -1-\frac{3}{4}[/tex]
Operating:
[tex]\displaystyle \frac{1}{4}x \ge -\frac{7}{4}[/tex]
Multiply by 4:
[tex]x \ge -7[/tex]
The solution expressed in interval form is:
[tex]\boxed{[-7,+\infty)}[/tex]