Respuesta :
Answer:
V ≈ 552.9 cm³
Step-by-step explanation:
The volume (V) of a cylinder is calculated as
V = πr²h ( r is the radius and h the height ) , then
V = π × 4² × 11 = π × 16 × 11 = 176π ≈ 552.9 cm³ ( to the nearest tenth )
Answer:
The volume of Coke can is 552.64 cm².
Step-by-step explanation:
Given :
- ✧ Radius of Coke can = 4 cm.
- ✧ Height of Coke can = 11 cm.
To Find :
- ✧ Volume of Coke can
Using Formula :
[tex]{\star{\small{\underline{\boxed{\sf{\red{V_{(Can)} = \pi{r}^{2}h}}}}}}}[/tex]
- ✧ V = Volume
- ✧ π = 3.14
- ✧ r = radius
- ✧ h = height
Solution :
Here's the Coke can is in cylindrical form.
So, finding the volume of Coke can by substituting the values in the formula :
[tex]{\dashrightarrow{\pmb{\sf{Volume_{(Can)} = \pi{r}^{2}h}}}}[/tex]
[tex]{\dashrightarrow{\sf{Volume_{(Can)} = 3.14 \times {(4)}^{2} \times 11}}}[/tex]
[tex]{\dashrightarrow{\sf{Volume_{(Can)} = 3.14 \times {(4 \times 4)}\times 11}}}[/tex]
[tex]{\dashrightarrow{\sf{Volume_{(Can)} = 3.14 \times {(16)}\times 11}}}[/tex]
[tex]{\dashrightarrow{\sf{Volume_{(Can)} = 3.14 \times {16}\times 11}}}[/tex]
[tex]{\dashrightarrow{\sf{Volume_{(Can)} = \dfrac{314}{100} \times {16}\times 11}}}[/tex]
[tex]{\dashrightarrow{\sf{Volume_{(Can)} = \dfrac{314 \times 16 \times 11}{100}}}}[/tex]
[tex]{\dashrightarrow{\sf{Volume_{(Can)} = \dfrac{5024 \times 11}{100}}}}[/tex]
[tex]{\dashrightarrow{\sf{Volume_{(Can)} = \dfrac{55264}{100}}}}[/tex]
[tex]{\dashrightarrow{\sf{Volume_{(Can)} \approx 552.64 \: {cm}^{2}}}}[/tex]
[tex]\star{\red{\underline{\boxed{\sf{Volume_{(Can)} \approx 552.64 \: {cm}^{2}}}}}}[/tex]
Hence, the volume of Coke can is 552.64 cm².