Respuesta :

Step-by-step explanation:

tan(A/2)

tan(A/2)=sinA/1+cos A

tan(A/2)= 5/13÷1+12/13

tanA/2=1/5

Answer:

tan([tex]\frac{A}{2}[/tex] ) = ± [tex]\frac{1}{5}[/tex]

Step-by-step explanation:

Using the trigonometric identity

tan ([tex]\frac{A}{2}[/tex] ) = ± [tex]\sqrt{\frac{1-cosA}{1+cosA} }[/tex]

Given

tanA = [tex]\frac{5}{12}[/tex] = [tex]\frac{opposite}{adjacent}[/tex]

This is a right triangle 5- 12- 13 ( with hypotenuse 13 ), then

cosA = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{12}{13}[/tex] , then

tan ([tex]\frac{A}{2}[/tex] )

= ± [tex]\sqrt{\frac{1-\frac{12}{13} }{1+\frac{12}{13} } }[/tex]

= ± [tex]\sqrt{\frac{\frac{1}{13} }{\frac{25}{13} } }[/tex]

= ± [tex]\sqrt{\frac{1}{25} }[/tex]

= ± [tex]\frac{1}{5}[/tex]