∠A and \angle B∠B are vertical angles. If m\angle A=(6x-11)^{\circ}∠A=(6x−11) ∘ and m\angle B=(5x+4)^{\circ}∠B=(5x+4) ∘ , then find the measure of \angle B∠B.

Respuesta :

Answer: [tex]\angle B=79^{\circ}.[/tex]

Step-by-step explanation:

When two lines cross each other , then the opposite angles are known  as vertical angles.

Vertical angles are equal.

Here, ∠A and ∠B are vertical angles.

So, ∠A = ∠B

If [tex]\angle A=(6x-11)^{\circ}[/tex] and [tex]\angle B=(5x+4)^{\circ}[/tex]

Then , [tex]6x-11=5x+4[/tex]

Subtract 5x from both sides, we get

[tex]x-11=4[/tex]

Add 11 on both sides, we get

[tex]x=15[/tex]

Now , [tex]\angle B=(5(15)+4)^{\circ}=79^{\circ}[/tex]

Hence, the measure of [tex]\angle B=79^{\circ}.[/tex]