Respuesta :

Answer:

The 75th term of the arithmetic sequence -17, -13, -9.... is:

[tex]a_{75}=279[/tex]

Step-by-step explanation:

Given the sequence

[tex]-17, -13, -9....[/tex]

An arithmetic sequence has a constant difference 'd' and is defined by  

[tex]a_n=a_1+\left(n-1\right)d[/tex]

computing the differences of all the adjacent terms

[tex]-13-\left(-17\right)=4,\:\quad \:-9-\left(-13\right)=4[/tex]

The difference between all the adjacent terms is the same and equal to

[tex]d=4[/tex]

The first element of the sequence is:

[tex]a_1=-17[/tex]

now substitute [tex]d=4[/tex] and [tex]a_1=-17[/tex] in the nth term of the sequence

[tex]a_n=a_1+\left(n-1\right)d[/tex]

[tex]a_n=4\left(n-1\right)-17[/tex]

[tex]a_n=4n-21[/tex]

Now, substitute n = 75 in the [tex]a_n=4n-21[/tex] sequence to determine the 75th sequence

[tex]a_n=4n-21[/tex]

[tex]a_{75}=4\left(75\right)-21[/tex]

[tex]a_{75}=300-21[/tex]

[tex]a_{75}=279[/tex]

Therefore,  the 75th term of the arithmetic sequence -17, -13, -9.... is:

[tex]a_{75}=279[/tex]