Respuesta :
Answer:
(a) [tex]Area = x^2 + 8x - 48[/tex]
(b) [tex]x = 6[/tex]
Step-by-step explanation:
Given
Let the side length of the square be x
So, the rectangle has:
[tex]Length = x + 12[/tex] -- increase by 12
[tex]Width = x - 4[/tex] --- decrease by 4
Solving (a): The area of the rectangle.
This is:
[tex]Area = Length * Width[/tex]
[tex]Area = (x + 12) *(x - 4)[/tex]
Open brackets
[tex]Area = x^2 + 12x - 4x - 48[/tex]
[tex]Area = x^2 + 8x - 48[/tex]
Solving (b): Find x
The area of the square is:
[tex]Area = x^2[/tex]
If the rectangle has the same area, then:
[tex]x^2 + 8x - 48 = x^2[/tex]
Collect like terms
[tex]8x - 48 = x^2 - x^2[/tex]
[tex]8x - 48 = 0[/tex]
[tex]8x = 48[/tex]
Solve for x
[tex]x = 6[/tex]