Respuesta :
First, you have to calculate the area of the triangle. The formula would be
[tex] A_{T} = \sqrt{s(s-a)(s-b)(s-c)} [/tex]
where s is the semi-parameter of the triangle with sides a, b and c
[tex]s= \frac{a+b+c}{2} [/tex]
[tex]s= \frac{7+8+11}{2}=13[/tex]
So,
[tex]A_{T} = \sqrt{13(13-7)(13-8)(13-11)}[/tex]
[tex]A_{T} = 27.93 \ yd^{2} [/tex]
So, the total cost of carpeting the room is,
[tex]27.93 \ yd^{2} (17.50 \ per \ yd^{2}+3.25 \ \ per \ yd^{2})=579.52[/tex]
$579.5
[tex] A_{T} = \sqrt{s(s-a)(s-b)(s-c)} [/tex]
where s is the semi-parameter of the triangle with sides a, b and c
[tex]s= \frac{a+b+c}{2} [/tex]
[tex]s= \frac{7+8+11}{2}=13[/tex]
So,
[tex]A_{T} = \sqrt{13(13-7)(13-8)(13-11)}[/tex]
[tex]A_{T} = 27.93 \ yd^{2} [/tex]
So, the total cost of carpeting the room is,
[tex]27.93 \ yd^{2} (17.50 \ per \ yd^{2}+3.25 \ \ per \ yd^{2})=579.52[/tex]
$579.5
By sketching this triangle it can be determined that this is not a right triangle, but rather an oblique-angled triangle. For the lengths of the three sides, let a = 7, b = 8, and c = 11, and let angle A be opposite side a, and angle B be opposite side b, and angle C be opposite side c.
Using the Law of Cosines:
cos(A) = (b² + c² - a²)/2bc = [(8)² + (11)² - (7)²)/2(8)(11) = 0.773
A = acos(0.773) = 39.4°
Using the Law of Sines:
sin(A)/a = sin(B)/b ==> sin(B) = (b/a)sin(A) = (8/7)sin(39.4°) = 0.725
B = asin(0.725) = 46.5°
Knowing angles A and B, angle C is:
C = 180° - A - B = 180° - 39.4° - 46.5° = 94.1°
Finally, the area is:
Area = (ab/2)sin(C) = [(7)(8)/2]sin(94.1°) = 27.928 yd²
The total cost is (27.928)($17.50 + $3.25) = $579.51
Using the Law of Cosines:
cos(A) = (b² + c² - a²)/2bc = [(8)² + (11)² - (7)²)/2(8)(11) = 0.773
A = acos(0.773) = 39.4°
Using the Law of Sines:
sin(A)/a = sin(B)/b ==> sin(B) = (b/a)sin(A) = (8/7)sin(39.4°) = 0.725
B = asin(0.725) = 46.5°
Knowing angles A and B, angle C is:
C = 180° - A - B = 180° - 39.4° - 46.5° = 94.1°
Finally, the area is:
Area = (ab/2)sin(C) = [(7)(8)/2]sin(94.1°) = 27.928 yd²
The total cost is (27.928)($17.50 + $3.25) = $579.51