Respuesta :

Answer:

[tex]f(8) = 81[/tex]

[tex](g\ o\ f)(x) = x^2 + 2x -4[/tex]

Step-by-step explanation:

Solving (a):

[tex]f(x) = x^2 + 2x +1[/tex]

[tex]g(x) = x - 5[/tex]

Solve for f(8)

We have:

[tex]f(x) = x^2 + 2x +1[/tex]

Substitute 8 for x

[tex]f(8) = 8^2 + 2*8 +1[/tex]

Solve

[tex]f(8) = 64 + 16 +1[/tex]

[tex]f(8) = 81[/tex]

Solving (b):

[tex](g\ o\ f)(x)[/tex]

This is solved by:

[tex](g\ o\ f)(x) = g(f(x))[/tex]

So, we have:

[tex]g(x) = x - 5[/tex]

[tex]g(f(x)) = f(x) - 5[/tex]

Substitute: [tex]f(x) = x^2 + 2x +1[/tex]

[tex]g(f(x)) = x^2 + 2x + 1 - 5[/tex]

[tex]g(f(x)) = x^2 + 2x -4[/tex]

Hence:

[tex](g\ o\ f)(x) = x^2 + 2x -4[/tex]