How to find an equation for a line through two given points?

Answer:
The equation of the line is: [tex]y = 0.6x + 0.6[/tex]
Step-by-step explanation:
Equation of a line:
The equation of a line has the following format:
[tex]y = mx + b[/tex]
In which m is the slope and b is the y-intercept.
Two points:
We have these following two points in this exercise:
x = -6, y = -3, so (-6,-3)
x = 4, y = 3, so (4,3)
Finding the slope:
Given two points, the slope is given by the change in y divided by the change in x.
Change in y: 3 - (-3) = 3 + 3 = 6
Change in x: 4 - (-6) = 4 + 6 = 10
So
[tex]m = \frac{6}{10} = 0.6[/tex]
Then
[tex]y = 0.6x + b[/tex]
Finding b:
We replace one of the points in the equation to find b. I will use (4,3).
[tex]y = 0.6x + b[/tex]
[tex]3 = 0.6*4 + b[/tex]
[tex]2.4 + b = 3[/tex]
[tex]b = 0.6[/tex]
The equation of the line is: [tex]y = 0.6x + 0.6[/tex]