Without graphing, determine whether the system of linear equations has one solution, infinitely many solutions, or no solution. Explain your reasoning.

[tex]y=15x+1[/tex]
[tex]y=15x+2[/tex]

Respuesta :

[tex]\huge{ \mathcal{  \underline{ Answer} \:  \:  ✓ }}[/tex]

First equation :

  • [tex]y = 15x + 1[/tex]

  • [tex]y - 15x - 1 = 0[/tex]

Second equation :

  • [tex]y = 15x + 2[/tex]

  • [tex]y - 15x - 2 = 0[/tex]

Now, the equations are in the form of

  • [tex]a_1x {}^{2} + b_1x + c_1 = 0[/tex]

  • [tex]a_2x {}^{2} + b_2x + c_2 = 0[/tex]

where,

[tex] \dfrac{a_1}{a_2} = \dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2} [/tex]

therefore the equations would have no solution .

_____________________________

[tex]\mathrm{ \#TeeNForeveR}[/tex]