A cone has a radius of 5 ft and a height of 15 ft. It is empty and is being filled with water at a constant rate of 15 15 ft 3 ft3 / sec sec . Find the rate of change of the radius of the surface of the water when the radius of the surface of the water is 2 2 ft. (You must also include the units)

Respuesta :

Answer:

[tex]\frac{dr}{dt}=0.11062ft/sec[/tex]

Step-by-step explanation:

From the question we are told that:

Radius [tex]r=5ft[/tex]

Height [tex]H=15ft[/tex]

Rate [tex]R=15ft/3sec =5ft/s[/tex]

Surface Radius [tex]R_{surf}=2.2ft[/tex]

Generally the equation for Volume is mathematically given by

 [tex]V=\frac{1}{3}\pi*r^2h[/tex]

Since radius to height ratio gives

 [tex]\frac{r}{h}=\frac{5}{15}[/tex]

 [tex]\frac{r}{h}=\frac{1}{3}[/tex]

 [tex]h=3r[/tex]

Therefore

 [tex]V=\frac{1}{3}\pi*r^2(3r)[/tex]

 [tex]V=\pi r^3[/tex]

Generally the equation for Change of Volume is mathematically given by

 [tex]\frac{dv}{dt}=\pi \frac{d}{dt}(r^3)[/tex]

 [tex]\frac{dv}{dt}=\pi 3*r^2 \frac{dr}{dt}[/tex]

 [tex]\frac{dv}{dt}=\pi 3*(2.2)^2 \frac{dr}{dt}[/tex]

 [tex]\frac{dr}{dt}=\frac{5}{45.62}[/tex]

 [tex]\frac{dr}{dt}=0.11062ft/sec[/tex]