A 2.2 kg, 20-cm-diameter turntable rotates at 80 rpm on frictionless bearings. Two 600 g blocks fall from above, hit the turntable simultaneously at opposite ends of a diagonal, and stick. What is the turntable's angular velocity, in rpm, just after this event?

Respuesta :

Answer:

[tex]w_2=38.3rpm[/tex]

Explanation:

From the question we are told that:

Mass of turntable [tex]M=2.2kg[/tex]

Diameter of turntable [tex]d=20cm=>0.2m[/tex]

Angular Velocity [tex]\omega =80rpm[/tex]

Mass of Blocks [tex]M_b=600g=>0.6kg[/tex]

Generally the equation for inertia is mathematically given by

Initial scenario at \omega=80rpm

 [tex]I_1=\frac{1}{2}mR^2[/tex]

 [tex]I_1=\frac{1}{2}*2.2*0.1^2[/tex]

 [tex]I_1=0.11kgm^2[/tex]

Final scenario

 [tex]I_2=I_1+2mR^2[/tex]

 [tex]I_2=0.011+(2*0.6*0.12)[/tex]

 [tex]I_2=0.023[/tex]

Generally the equation for The relationship between Angular velocity and inertia is mathematically given by

 [tex]I_1w_1=I_2w_2[/tex]

 [tex]w_2=\frac{I_1 \omega}{I_2}[/tex]

 [tex]w_2=\frac{0.011*80}{0.023}[/tex]

 [tex]w_2=38.3rpm[/tex]