Use Hooke's Law to determine the work done by the variable force in the spring problem. A force of 450 newtons stretches a spring 30 centimeters. How much work is done in stretching the spring from 30 centimeters to 60 centimeters?

Respuesta :

Answer:

The work done is 202.50Nm

Step-by-step explanation:

Given

[tex]F =450N[/tex]

[tex]x_1 = 30cm[/tex]

[tex]x_2 = 60cm[/tex]

Required

The work done

First, we calculate the spring constant (k)

[tex]F = kx_1[/tex]

[tex]450N = k *30cm[/tex]

[tex]k = \frac{450N}{30cm}[/tex]

[tex]k =15N/cm[/tex]

So:

[tex]F = kx_1[/tex]

[tex]F(x) = 15x[/tex]

The work done using Hooke's law is:

[tex]W =\int\limits^a_b {F(x)} \, dx[/tex]

This gives:

[tex]W =\int\limits^{60}_{30} {15x} \, dx[/tex]

Rewrite as:

[tex]W =15\int\limits^{60}_{30} {x} \, dx[/tex]

Integrate

[tex]W =15 \frac{x^2}{2}|\limits^{60}_{30}[/tex]

This gives:

[tex]W =15 *\frac{60^2 - 30^2}{2}[/tex]

[tex]W =15 *\frac{2700}{2}[/tex]

[tex]W =15 *1350[/tex]

[tex]W =20250N-cm[/tex]

Convert to Nm

[tex]W =\frac{20250Nm}{100}[/tex]

[tex]W =202.50Nm[/tex]