Answer:
(1,1); (2,0) and (-1,-3)
Step-by-step explanation:
Given
[tex]y=-x+2[/tex] ---- (1)
[tex]y = 2x - 1[/tex] --- (2)
[tex]y = x -2[/tex] ---- (3)
Required
The vertices of the triangle
To do this, we simply equate the equations.
Equate (1) and (2)
[tex]-x + 2 = 2x - 1[/tex]
Collect like terms
[tex]-x-2x=-2-1[/tex]
[tex]-3x=-3[/tex]
Divide by -3
[tex]x =1[/tex]
Substitute [tex]x =1[/tex] in (1), to get the y-coordinates
[tex]y=-x+2[/tex]
[tex]y=-1+2[/tex]
[tex]y=1[/tex]
So, the coordinate is: (1,1)
Equate (1) and (3)
[tex]-x + 2 = x - 2[/tex]
Collect like terms
[tex]-x -x = -2 - 2[/tex]
[tex]-2x = -4[/tex]
Divide by -2
[tex]x=2[/tex]
Substitute [tex]x=2[/tex] in (1) to get the y coordinate
[tex]y=-x+2[/tex]
[tex]y=-2+2[/tex]
[tex]y=0[/tex]
So, the coordinate is (2,0)
Equate (2) and (3)
[tex]2x - 1 = x - 2[/tex]
Collect like terms
[tex]2x-x=1-2[/tex]
[tex]x=-1[/tex]
Substitute [tex]x=-1[/tex] in (2) to get the y coordinates
[tex]y = x -2[/tex]
[tex]y=-1-2[/tex]
[tex]y=-3[/tex]
So, the coordinate is (-1,-3)