Find a power series for the function, centered at c, and determine the interval of convergence. f(x) = 9 3x + 2 , c = 6

Respuesta :

Answer:

[tex]\frac{9}{3x + 2} = 1 - \frac{1}{3}(x - \frac{7}{3}) + \frac{1}{9}(x - \frac{7}{3})^2 - \frac{1}{27}(x - \frac{7}{3})^3 ........[/tex]

The interval of convergence is:[tex](-\frac{2}{3},\frac{16}{3})[/tex]

Step-by-step explanation:

Given

[tex]f(x)= \frac{9}{3x+ 2}[/tex]

[tex]c = 6[/tex]

The geometric series centered at c is of the form:

[tex]\frac{a}{1 - (r - c)} = \sum\limits^{\infty}_{n=0}a(r - c)^n, |r - c| < 1.[/tex]

Where:

[tex]a \to[/tex] first term

[tex]r - c \to[/tex] common ratio

We have to write

[tex]f(x)= \frac{9}{3x+ 2}[/tex]

In the following form:

[tex]\frac{a}{1 - r}[/tex]

So, we have:

[tex]f(x)= \frac{9}{3x+ 2}[/tex]

Rewrite as:

[tex]f(x) = \frac{9}{3x - 18 + 18 +2}[/tex]

[tex]f(x) = \frac{9}{3x - 18 + 20}[/tex]

Factorize

[tex]f(x) = \frac{1}{\frac{1}{9}(3x + 2)}[/tex]

Open bracket

[tex]f(x) = \frac{1}{\frac{1}{3}x + \frac{2}{9}}[/tex]

Rewrite as:

[tex]f(x) = \frac{1}{1- 1 + \frac{1}{3}x + \frac{2}{9}}[/tex]

Collect like terms

[tex]f(x) = \frac{1}{1 + \frac{1}{3}x + \frac{2}{9}- 1}[/tex]

Take LCM

[tex]f(x) = \frac{1}{1 + \frac{1}{3}x + \frac{2-9}{9}}[/tex]

[tex]f(x) = \frac{1}{1 + \frac{1}{3}x - \frac{7}{9}}[/tex]

So, we have:

[tex]f(x) = \frac{1}{1 -(- \frac{1}{3}x + \frac{7}{9})}[/tex]

By comparison with: [tex]\frac{a}{1 - r}[/tex]

[tex]a = 1[/tex]

[tex]r = -\frac{1}{3}x + \frac{7}{9}[/tex]

[tex]r = -\frac{1}{3}(x - \frac{7}{3})[/tex]

At c = 6, we have:

[tex]r = -\frac{1}{3}(x - \frac{7}{3}+6-6)[/tex]

Take LCM

[tex]r = -\frac{1}{3}(x + \frac{-7+18}{3}+6-6)[/tex]

r = -\frac{1}{3}(x + \frac{11}{3}+6-6)

So, the power series becomes:

[tex]\frac{9}{3x + 2} = \sum\limits^{\infty}_{n=0}ar^n[/tex]

Substitute 1 for a

[tex]\frac{9}{3x + 2} = \sum\limits^{\infty}_{n=0}1*r^n[/tex]

[tex]\frac{9}{3x + 2} = \sum\limits^{\infty}_{n=0}r^n[/tex]

Substitute the expression for r

[tex]\frac{9}{3x + 2} = \sum\limits^{\infty}_{n=0}(-\frac{1}{3}(x - \frac{7}{3}))^n[/tex]

Expand

[tex]\frac{9}{3x + 2} = \sum\limits^{\infty}_{n=0}[(-\frac{1}{3})^n* (x - \frac{7}{3})^n][/tex]

Further expand:

[tex]\frac{9}{3x + 2} = 1 - \frac{1}{3}(x - \frac{7}{3}) + \frac{1}{9}(x - \frac{7}{3})^2 - \frac{1}{27}(x - \frac{7}{3})^3 ................[/tex]

The power series converges when:

[tex]\frac{1}{3}|x - \frac{7}{3}| < 1[/tex]

Multiply both sides by 3

[tex]|x - \frac{7}{3}| <3[/tex]

Expand the absolute inequality

[tex]-3 < x - \frac{7}{3} <3[/tex]

Solve for x

[tex]\frac{7}{3} -3 < x <3+\frac{7}{3}[/tex]

Take LCM

[tex]\frac{7-9}{3} < x <\frac{9+7}{3}[/tex]

[tex]-\frac{2}{3} < x <\frac{16}{3}[/tex]

The interval of convergence is:[tex](-\frac{2}{3},\frac{16}{3})[/tex]