Respuesta :
Answer:
-18n - 24
Step-by-step explanation:
[tex] - \frac{2}{5} \times (45n + 60)[/tex]
[tex] = - \frac{2}{5} \times 5(9n + 12)[/tex]
[tex] = - 2(9n + 12) [/tex]
[tex] = 2 \times 9n - 2 \times 12[/tex]
[tex] = - 18n - 2 \times 12[/tex]
[tex] = - 18n - 24[/tex]
[tex] \huge \boxed{\mathfrak{Question} \downarrow}[/tex]
[tex] \large \sf-\frac{2}{5}\left(45n+60\right) \\ [/tex]
[tex] \large \boxed{\mathfrak{Answer \: with \: Explanation} \downarrow}[/tex]
[tex] \large \sf \: -\frac{2}{5}\left(45n+60\right) \\ [/tex]
- Use the distributive property to multiply [tex]\sf-\frac{2}{5} \\ [/tex] by 45n+60.
[tex] \large \sf-\frac{2}{5}\times 45n-\frac{2}{5}\times 60 \\ [/tex]
- Express [tex]\sf-\frac{2}{5} \\ [/tex] × 45 as a single fraction.
[tex] \large \sf\frac{-2\times 45}{5}n-\frac{2}{5}\times 60 \\ [/tex]
- Multiply -2 and 45 to get -90.
[tex] \large \sf\frac{-90}{5}n-\frac{2}{5}\times 60 \\ [/tex]
- Divide -90 by 5 to get -18.
[tex] \large \sf-18n-\frac{2}{5}\times 60 \\ [/tex]
- Express [tex]\sf -\frac{2}{5}\times 60 \\ [/tex]as a single fraction.
[tex] \large \sf-18n+\frac{-2\times 60}{5} \\ [/tex]
- Multiply -2 and 60 to get -120.
[tex] \large \sf-18n+\frac{-120}{5} \\ [/tex]
- Divide -120 by 5 to get -24.
[tex] \large \boxed{ \bf \: -18n-24 }[/tex]