Respuesta :
The point needed for the relation is [tex]P(x,y) = (3, 4)[/tex] if P and P' are symmetric about the x-axis.
The point needed for the relation is [tex]P(x,y) = (-3, -4)[/tex] if P and P' are symmetric about the y-axis.
In this exercise we are supposed to determine the coordinates of a point P under an assumption of rigid transformation. Now, we must use the following symmetry transformations:
Reflection about the x-axis
[tex]S'(x,y) = S(x,y) - 2\cdot (0, s_{y})[/tex] (1)
Reflection about the y-axis
[tex]S'(x,y) = S(x,y) - 2\cdot (s_{x}, 0)[/tex] (2)
Where:
- [tex]S(x,y)[/tex] - Original point.
- [tex]S' (x,y)[/tex] - Reflected point.
- [tex]s_{x}, s_{y}[/tex] - Coordinates of point S.
If we know that [tex]P'(x,y) = (3, -4)[/tex], the coordinates for each reflection are, respectively:
Reflection about the x-axis
[tex]P(x,y) = (3,-4) - 2\cdot (0, -4)[/tex]
[tex]P(x,y) = (3, 4)[/tex]
[tex]P(x,y) = (3, 4)[/tex] if P and P' are symmetric about the x-axis.
Reflection about the y-axis
[tex]P(x,y) = (3, -4) - 2\cdot (3, 0)[/tex]
[tex]P(x,y) = (-3, -4)[/tex]
[tex]P(x,y) = (-3, -4)[/tex] if P and P' are symmetric about the y-axis.
We kindly invite to see this question on rigid transformations: https://brainly.com/question/18613109