Respuesta :
[tex]\large\underline{\sf{Solution-}}[/tex]
We have to evaluate the logarithm.
Given That:
[tex] \rm = \log \bigg( \dfrac{ {a}^{3} {b}^{2} }{ {c}^{4} } \bigg) + \log \bigg( \dfrac{b {c}^{3} }{ {a}^{2} } \bigg) - \log \bigg( \dfrac{a}{c} \bigg)[/tex]
We know that:
[tex] \rm\red\longmapsto \log(x) + \log(y) = \log(xy) [/tex]
[tex] \rm \red\longmapsto \log(x) - \log(y) = \log \bigg( \dfrac{x}{y} \bigg) [/tex]
Therefore, we get:
[tex] \rm = \log \bigg( \dfrac{ {a}^{3} {b}^{2} }{ {c}^{4} } \times \dfrac{b {c}^{3} }{ {a}^{2} } \bigg) - \log \bigg( \dfrac{a}{c} \bigg)[/tex]
[tex] \rm = \log \bigg( \dfrac{ {a}^{3 - 2} {b}^{2 + 1} }{ {c}^{4 - 3} } \bigg) - \log \bigg( \dfrac{a}{c} \bigg)[/tex]
[tex] \rm = \log \bigg( \dfrac{a{b}^{3} }{c} \bigg) - \log \bigg( \dfrac{a}{c} \bigg)[/tex]
[tex] \rm = \log \bigg( \dfrac{a{b}^{3} }{c} \div \dfrac{a}{c} \bigg)[/tex]
[tex] \rm = \log \bigg( \dfrac{a{b}^{3} }{c} \times \dfrac{c}{a} \bigg)[/tex]
[tex] \rm = \log( {b}^{3})[/tex]
As we know that:
[tex]\rm \red\longmapsto \log( {x}^{n}) = n \log(x)[/tex]
Therefore, we get:
[tex] \rm = 3\log(b)[/tex]