Respuesta :
The two-step exchange process is an illustration of composite functions
- The function that converts dollars to Euro is [tex]\mathbf{g(d) = 0.897d - 3.3 }[/tex]
- You would receive 400.35 Euros, when you exchange 450 dollars
- You would receive 70.6 dollars, when you exchange 60 Euros
Converting from dollars to British pounds, we have:
[tex]\mathbf{f(d) = 0.69d - 1}[/tex]
Converting from British pounds to Euro, we have:
[tex]\mathbf{g(p) = 1.3p - 2}[/tex]
(a) Function that converts dollars to Euro
To do this, we simply calculate gf(d)
So, we have:
[tex]\mathbf{g(f(d)) = 1.3f(d) - 2}[/tex]
Substitute [tex]\mathbf{f(d) = 0.69d - 1}[/tex]
[tex]\mathbf{g(f(d)) = 1.3 \times (0.69d - 1) - 2}[/tex]
Expand
[tex]\mathbf{g(f(d)) = 0.897d - 1.3 - 2}[/tex]
[tex]\mathbf{g(f(d)) = 0.897d - 3.3 }[/tex]
Rewrite as:
[tex]\mathbf{g(d) = 0.897d - 3.3 }[/tex]
Hence, the function that converts dollars to Euro is [tex]\mathbf{g(d) = 0.897d - 3.3 }[/tex]
(b) Euro equivalent of $450
In (a), we have [tex]\mathbf{g(d) = 0.897d - 3.3 }[/tex]
Substitute 450 for d
[tex]\mathbf{g(450) = 0.897 \times 450 - 3.3 }[/tex]
[tex]\mathbf{g(450) = 403.65 - 3.3 }[/tex]
[tex]\mathbf{g(450) = 400.35}[/tex]
Hence, you would receive 400.35 Euros, when you exchange 450 dollars
(c) Dollar equivalent of 60 Euros
In (a), we have [tex]\mathbf{g(d) = 0.897d - 3.3 }[/tex]
Substitute 60 for g(d)
[tex]\mathbf{60 = 0.897d - 3.3 }[/tex]
Add 3.3 to both sides
[tex]\mathbf{0.897d = 63.3 }[/tex]
Divide both sides by 0.897
[tex]\mathbf{d = 70.6}[/tex]
Hence, you would receive 70.6 dollars, when you exchange 60 Euros
Read more about composite functions at:
https://brainly.com/question/20379727