Respuesta :

The expression [tex]\rm \dfrac{15}{x-6}+\dfrac{7}{x+6}[/tex] is equivalent to  [tex]\dfrac{22x+48}{x^2-36}\\\\[/tex]  and it can be determined by using LCM and fraction.

Given that,

Expression;

[tex]\rm \dfrac{15}{x-6}+\dfrac{7}{x+6}[/tex]

If no denominator equals zero,

We have to determine,

Which expression is equivalent to the given expression?

According to the question,

Expression;

[tex]\rm \dfrac{15}{x-6}+\dfrac{7}{x+6}[/tex]

If no denominator equals zero,

To determine the equivalent relation of the given equation following all the steps given below.

  • Step1; First take the LCM,

                   [tex]\rm= \dfrac{15}{x-6}+\dfrac{7}{x+6}\\\\=\dfrac{15(x+6) + 7(x-6)}{(x-6) (x+6)}[/tex]

  • Step2; Multiply the terms and simplify the equation,

                   [tex]\rm=\dfrac{15(x+6) + 7(x-6)}{(x-6) (x+6)}\\\\= \dfrac{15x+90 + 7x-42}{x(x+6) -6 (x+6)}\\\\= \dfrac{22x+48}{x^2+6x -6 x-36}\\\\= \dfrac{22x+48}{x^2-36}\\\\[/tex]

Hence, The expression [tex]\rm \dfrac{15}{x-6}+\dfrac{7}{x+6}[/tex] is equivalent to  [tex]\dfrac{22x+48}{x^2-36}\\\\[/tex] .

For more details about Expression refer to the link given below.

https://brainly.com/question/14610993

Answer:

22x+ 48 / x^2 - 36

Step-by-step explanation:

edmentum 2022