Respuesta :
The expression [tex]\rm \dfrac{15}{x-6}+\dfrac{7}{x+6}[/tex] is equivalent to [tex]\dfrac{22x+48}{x^2-36}\\\\[/tex] and it can be determined by using LCM and fraction.
Given that,
Expression;
[tex]\rm \dfrac{15}{x-6}+\dfrac{7}{x+6}[/tex]
If no denominator equals zero,
We have to determine,
Which expression is equivalent to the given expression?
According to the question,
Expression;
[tex]\rm \dfrac{15}{x-6}+\dfrac{7}{x+6}[/tex]
If no denominator equals zero,
To determine the equivalent relation of the given equation following all the steps given below.
- Step1; First take the LCM,
[tex]\rm= \dfrac{15}{x-6}+\dfrac{7}{x+6}\\\\=\dfrac{15(x+6) + 7(x-6)}{(x-6) (x+6)}[/tex]
- Step2; Multiply the terms and simplify the equation,
[tex]\rm=\dfrac{15(x+6) + 7(x-6)}{(x-6) (x+6)}\\\\= \dfrac{15x+90 + 7x-42}{x(x+6) -6 (x+6)}\\\\= \dfrac{22x+48}{x^2+6x -6 x-36}\\\\= \dfrac{22x+48}{x^2-36}\\\\[/tex]
Hence, The expression [tex]\rm \dfrac{15}{x-6}+\dfrac{7}{x+6}[/tex] is equivalent to [tex]\dfrac{22x+48}{x^2-36}\\\\[/tex] .
For more details about Expression refer to the link given below.
https://brainly.com/question/14610993
Answer:
22x+ 48 / x^2 - 36
Step-by-step explanation:
edmentum 2022